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Abstract

Heterotrimeric G protein signaling cascades are one of the primary metazoan sensing mechanisms linking a cell to environ-
ment. However, the number of experimentally identified effectors of G protein in plant is limited. We have therefore studied
which tools are best suited for predicting G protein effectors in rice. Here, we compared the predicting performance of four
classifiers with eight different encoding schemes on the effectors of G proteins by using 10-fold cross-validation. Four meth-
ods were evaluated: random forest, naive Bayes, K-nearest neighbors and support vector machine. We applied these
methods to experimentally identified effectors of G proteins and randomly selected non-effector proteins, and tested their
sensitivity and specificity. The result showed that random forest classifier with composition of K-spaced amino acid pairs
and composition of motif or domain (CKSAAP_PROSITE_200) combination method yielded the best performance, with accur-
acy and the Mathew’s correlation coefficient reaching 74.62% and 0.49, respectively. We have developed G-Effector, an on-
line predictor, which outperforms BLAST, PSI-BLAST and HMMER on predicting the effectors of G proteins. This provided
valuable guidance for the researchers to select classifiers combined with different feature selection encoding schemes. We
used G-Effector to screen the effectors of G protein in rice, and confirmed the candidate effectors by gene co-expression
data. Interestingly, one of the top 15 candidates, which did not appear in the training data set, was validated in a previous
research work. Therefore, the candidate effectors list in this article provides both a clue for researchers as to their function
and a framework of validation for future experimental work. It is accessible at http://bioinformatics.fafu.edu.cn/geffector.
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Introduction

The maintenance of homeostasis in a living organism is fine-
tuned by the communication between cell and environment.
This helps cells to survive in unfavorable environment and
under stressful conditions [1]. One of the primary sensing and

physiologically important mechanisms used by metazoans is
heterotrimeric G protein (G protein) signaling cascades [2]. This
system is composed of a plasma membrane localized G-protein
coupled receptors (GPCRs) that transfer the extracellular signal
to an intracellular G protein, which in turn activate the
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downstream effectors and signaling cascades, thereby causing
defense responses [1, 2].

Heterotrimeric G protein consists of three subunits, a, ß and
c (named Ga, Gß and Gc, respectively), which form a heterotri-
meric complex in the inactive state. When an agonist binds to
its specific GPCR, an inactive G protein switches to its active
conformation. As a result, Ga-Guanosine Triphosphate (GTP)
separates from the Gßc dimer and both Ga-GTP and the Gßc

dimer activate downstream effectors. The GTP that is bound to
Ga is then hydrolyzed to Guanosine Diphosphate (GDP), thereby
inactivating Ga and allowing its reassociation with the Gßc

dimer to reform the inactive heterotrimeric complex.
Many new GPCRs have been identified in metazoans in the

past decades. In the gpDB database (Database of G proteins,
GPCR and Effectors), there are 2738 GPCRs and 1390 effectors in
469 species [3]. Whole-genome sequencing efforts have shown
that heterotrimeric G-protein signaling can be highly complex.
There are 23 Ga, 5 Gß and 12 Gc subunits in the human prote-
ome [4], leading to over 1300 theoretical heterotrimeric
complexes [2].

The number of heterotrimeric signaling complex compo-
nents in plants, however, is dramatically less than that in
human. There are only one canonical Ga subunit, one Gß sub-
unit and two identified Gc subunits in the two model plants,
Arabidopsis and rice [5]. Searches of gpDB databases did not
identify any plant sequences in the GPCR and effectors category
[2]. For the past decade, there has been only one putative GPCR
(GCR1) identified and experimentally investigated in
Arabidopsis [6]. GCR2 was reported as a new GPCR in
Arabidopsis [7], although it does not appear to have the canon-
ical seven transmembrane topology of known GPCRs [8]. In rice
(Oryza sativa L.), only a putative GPCR was isolated and func-
tioned to promote stress tolerance [1].

Many comprehensive bioinformatics methods have been de-
veloped to predict and characterize potential GPCRs [3]. More
than 850 proteins were predicted as human GPCRs [9]. Moriyama
et al. [10] used multiple computational methods, along with
HMMTOP2, to identify 54 GPCR candidates in Arabidopsis, whereas
Gookie et al. [2] used a combinatorial approach to identify novel
GPCRs within Arabidopsis, Oryza, and Populus proteomes.

Although GPCRs and their effectors are the two key compo-
nents of G protein signaling cascades, the research work on the
effectors of G proteins is limited when compared with the re-
search on GPCRs. To the best of our knowledge, there are few ef-
fectors experimentally identified in plants. There are some
examples, such as acireductone dioxygenase 1 that was re-
cently found to be an effector of Gß in Arabidopsis [11].
Furthermore, there are no specific predictors developed for pre-
dicting effectors of G proteins in plants. The researchers have to
use the traditional similarity search tools, such as BLAST, PSI-
BLAST or HMMER, to predict the effectors of G proteins. In this
research work, we first evaluate the performance of different
classifiers combined with different encoding schemes for fea-
ture selection. We find that random forest (RF) classifier com-
bined with CKSAAP_PROSITE_200 for feature selection yielded
the best performance. Second, we develop an online predictor,
G-Effector, by using RF classifier combined with
CKSAAP_PROSITE_200 for feature selection. Third, we compare
the predicting performance of G-Effector with traditional tools,
including BLAST, PSI-BLAST and HMMER. We have also
screened the candidate G protein effectors in rice made by the
new predictor. One of the top 15 candidate effectors has been
reported by Bhardwaj et al. [12]. The candidate effectors’ list in
this article provides both a clue for researchers as to their

function and a framework of validation by future experimental
work.

Methods
Preprocessing of data set

We collected 391 subunits of G proteins in 469 species from
gpDB database (http://bioinformatics.biol.uoa.gr/gpDB), whereas
153 interacting proteins of these G proteins were downloaded
from DIP (Database of Interacting Proteins, http://dip.doe-mbi.
ucla.edu/dip/) and Intact (ftp://ftp.ebi.ac.uk/pub/databases/in
tact/2011-03-03/psimitab/intact.zip). Those annotated as ‘re-
viewed’ but not GPCRs, regulators or cytoskeletal proteins re-
mained in the data set.

We found 116 candidate effectors from 9 species: Arabidopsis
thaliana; Bos taurus; Caenorhabditis elegans; Dictyostelium discoi-
deum; Drosophila melanogaster; Homo sapiens; Mus musculus; Rattus
norvegicus; and Saccharomyces cerevisiae. All the protein se-
quences in these 9 species, excluding the 116 candidate ef-
fectors, were named non-effectors and downloaded from
UniProt. After filtering by CD-HIT at 40% sequence identity, 104
candidate effectors and 30,622 non-effectors protein sequences
were compiled into positive and negative data sets, which could
be downloaded from http://bioinformatics.fafu.edu.cn/G_effec
tor_dataset/.

To balance the positive and negative data set during 10-fold
cross-validation processes, we partitioned the negative data set
into 10-folds, and randomly selected 104 sequences from each
fold [13]. Subsequently, each fold of data was in turn used as the
test data and the remaining 9-folds of data as the training data
and so each datum was tested exactly once. The jackknife test
was also used to examine the prediction performance.

Encoding schemes and feature selection

We used eight encoding schemes to select features in the pro-
tein sequences. The schemes were composition of amino acids
(AAs), composition of K-spaced amino acid pairs (CKSAAP),
composition of motif or domain (PROSITE), pseudo amino acid
composition (PseAAC) and combined methods, AA_CKSAAP,
AA_PROSITE, CKSAAP_PROSITE and CKSAAP_AA_PROSITE.

Composition of AA

The frequency of one AA in sequence fragment was calculated
by the following equation:

vi ¼ ci
lenðseqÞ ; i ¼ 1; . . . ; 20;

where Ci and len (seq) denote the composition of the corres-
ponding AA in the sequence fragment and the length of the se-
quence fragment, respectively. vi illustrates the frequency of
the AAs in the protein sequence.

Composition of K-spaced amino acid pairs

CKSAAP has been successfully used to represent the sequence
fragment [14, 15]. A sequence fragment may contain 400 types
(AxA, AxC, AxD, . . ., OxO) of K-spaced AA pairs (i.e. the pairs sep-
arated by K other AAs). The value of NAA is the composition of
the corresponding AA pairs in the sequence fragment, whereas
Ntotal represent the total composition of AA pairs in the se-
quence fragment. The flowchart and the calculation used for

2 | Li et al.

 at O
akland U

niversity on M
arch 15, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

Deleted Text: ,
Deleted Text: ,
Deleted Text: -
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text:  (TM)
Deleted Text: Over
Deleted Text: Whereas 
Deleted Text: tiliz
Deleted Text: ile
Deleted Text: to
Deleted Text:  (ARD1)
Deleted Text: paper
http://bioinformatics.biol.uoa.gr/gpDB
Deleted Text: ile
http://dip.doe-mbi.ucla.edu/dip/
http://dip.doe-mbi.ucla.edu/dip/
http://ftp://ftp.ebi.ac.uk/pub/databases/intact/2011-03-03/psimitab/intact.zip
http://ftp://ftp.ebi.ac.uk/pub/databases/intact/2011-03-03/psimitab/intact.zip
Deleted Text: '
Deleted Text: '
http://bioinformatics.fafu.edu.cn/G_effector_dataset/
http://bioinformatics.fafu.edu.cn/G_effector_dataset/
Deleted Text:  
Deleted Text:  
Deleted Text: a
Deleted Text: amino acids (
Deleted Text: )
Deleted Text: amino acid 
Deleted Text: amino acid
Deleted Text: amino acid
Deleted Text:  (CKSAAP)
Deleted Text: amino acid
Deleted Text: amino acid
Deleted Text: amino acid
Deleted Text: ile
Deleted Text: amino acid
http://bib.oxfordjournals.org/


the CKSAAP feature selection approach are shown in Lin
et al. [16].

When the value of K increases, the prediction accuracy and
the sensitivity increase, but the computational complexity and
the required time for training the models also increase [14]. In
this article, we considered the CKSAAP encoding scheme with
k¼ 0, 1, 2, 3, 4 and 5, and the total dimension of the six-spaced
feature vector is 2400.

Composition of motif or domain

We used perl script, ps_scan (ftp://ftp.expasy.org/databases/pro
site/ps_scan/), to search the motif or domain in the sequence
fragment in the PROSITE database, and then we calculated the
frequency of the corresponding motif in the sequence fragment
as the following:

vi ¼ ci
Nentries

; i ¼ 1; . . . ; 2342;

where Ci denotes the composition of the corresponding motif or
domain in the protein sequence fragment. Nentries denotes the
number of all the motif or domain in the PROSITE database
(total 2342 entries in prosite.dat Ver 20.83). vi illustrates the fre-
quency of the corresponding motif or domain in the protein se-
quence. The total dimension of PROSITE is 2400.

PseAAC

PseAAC was improved by Chou in 2005 and could be used to
represent sequence-order or position-specific information of
one protein or peptide [17, 18]. PseAAC for a protein or peptide P
can be generally formulated as follows:

P ¼ w1w2w3 . . . wu . . . wX½ �T

where T is the transpose operator, whereas X is an integer to re-
flect the vector’s dimension. In this research work, PseAAC-
builder was downloaded and run to generate PseAAC informa-
tion from the data set [19], whereas lamda parameter was set
from 1 to 50 to get the optimal performance.

Combined methods

AA, CKSAAP and PROSITE were used to compose combined fea-
ture selection methods. Because of the high dimensionality of
the CKSAAP and PROSITE encoding schemes, Relief-F was used
to decrease the total dimension of combined methods. Each fea-
ture input was ranked and weighted using the K-nearest neigh-
bors (KNNs) classification, and the features with positive weight
were selected for the data set. The total dimension of the com-
bination of CKSAAP_PROSITE was 1560, whereas that of
AA_CKSAAP_PROSITE was 1573.

Classifiers

We compared four classification methods: naive Bayes (NB);
KNN; RF; and support vector machine (SVM). These classifiers
were implemented using the Waikato Environment for
Knowledge Analysis software [20].

Naive Bayes

NB assumes the predictors are statistically independent, which
makes it a classification tool that is easy to interpret. Because

the inputs are assumed to be independent given the class, the
conditional probability is calculated by using Bayes’ theorem:

pðCjF1; F2; . . . ; FnÞ ¼
pðCÞ

an

i¼1

pðFijCÞ

pðF1; F2; . . . ; FnÞ

where F denotes the random variable corresponding to the in-
put of the classifier and C denotes the binary random variable
corresponding to the output of the classifier.

K-nearest neighbor

KNN rule is one of the simplest but powerful methods for per-
forming nonparametric classification [21]. The KNN classifier
has been successfully used to predict protein function [22], pro-
tein subcellular localization [23] and membrane protein type
[24].

KNN classifies a new instance by evaluating its distance
from each of the classifier instances and chooses the class label
of the classifier instance that is closest to the new instance as
the predicted class of the new instance. In this article, the dis-
tance (D) was calculated as following:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxð1Þ1 � xð2Þ1 Þ

2 þ ðxð1Þ2 � xð2Þ2 Þ
2 þ . . .þ ðxð1Þn � xð2Þn Þ2

q

where x 1ð Þ
1 ;xð1Þ2 ; . . . ;xð1Þn is the feature of a new instance, and xð2Þ1 ;

xð2Þ2 ; . . . ;xð2Þn is the feature of another instance (Supplementary
Figure S1).

Random forest

RF is an ensemble of unpruned decision trees [25], and has al-
ready been used to predict protein–protein interaction [26] and
protein long disordered region [27]. In RF, the number of trees in
the forest is adjustable, and each tree is grown to full length
using a subset of the training data set. To classify an instance of
unknown class label, each tree casts a unit classification vote.
The forest selects the classification having the most votes over
all the trees in the forest. Therefore, there are two key param-
eters in RF. One is the number of the trees, M, and the other is
the number of features selected randomly, m. In this article, we
selected the optimal value of M¼ 100, and determined m based
on the result of a preliminary evaluation (Supplementary
Figure S2).

Support vector machine

SVM is a popular machine learning algorithm mainly used to
deal with binary classification problems. In this article, LibSVM
under Weka with radial basis kernels was used as K
(xi, yi)¼ exp(-ckxi-yik2) [14]. We used grid search strategy to find
the optimal parameters C � {2� 5, 2� 3, 2� 1, . . ., 213, 215} and c �

{2� 15, 2� 13, 2� 11, . . ., 23}, and the total number of grids was
11*10¼ 110. After training with the subset of the training data,
the accuracy (ACC) of SVM predictor of every grid was calculated
and compared (Supplementary Figure S3) to optimize the C and
c for SVM.

Performance measurement

Four measurements—sensitivity (Sn), specificity (Sp), accuracy
(ACC) and the Matthew’s correlation coefficient (MCC)—were
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used to evaluate the performance of the different predictors
[28], which were defined below.

Sn ¼ TP
TPþ FN

;

Sp ¼ TN
TNþ FP

;

ACC ¼ TPþ TN
TPþ FPþ TNþ FN

and

MCC ¼ ðTP� TNÞ � ðFN� FPÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞ

p :

where TP, FP, FN and TN denote true positives, false positives,
false negatives and true negatives.

We used SPSS 16.0 to create receiver operating characteristic
(ROC) curves to compare the performance of different pre-
dictors. For each possible threshold, the sensitivity and
specificity were evaluated, the ROC curve [sensitivity versus
(1-specificity) curve] was plotted and the area underneath this
curve was used to compare the performance of predictors with
different feature selection methods.

Results and discussion
Evaluation on the performance of different encoding
schemes for feature selection

Four different classifiers corresponding to eight feature selec-
tion methods were trained and used to predict G protein ef-
fectors. We first evaluated the predicting performance of
different encoding schemes. The results are shown in Table 1
and Figure 1.

Among all the NB predictors, the NB with AA for feature se-
lection achieved the highest ACC of 66.78%. The best prediction

Table 1. Predicting performance of NB, KNN, RF and SVM on the effectors of heterotrimeric G proteins in rice with different features selection
methods

Method Feature Sp (%) Sn (%) ACC (%) MCC

NB AA 49.5264.17 84.0462.44 66.7861.74 0.3660.033
KNN (K¼ 7) 59.2364.62 76.3562.73 67.7962.80 0.3660.055
RF (m¼ 3) 73.7563.10 68.7562.07 71.2562.13 0.4360.043
SVM (c¼ 3, c¼ 3) 72.6062.83 72.0264.02 72.3162.94 0.4560.059
NB CKSAAP 40.3864.15 87.0260.89 63.7062.25 0.3160.045
KNN (K¼ 49) 64.3368.58 70.7766.79 67.5563.76 0.3560.075
RF (m¼ 50) 68.1763.56 72.8862.75 70.5362.31 0.4160.046
SVM (c¼ 1, c¼ 3) 70.7763.58 73.5663.23 72.1663.04 0.4460.061
NB PROSITE 31.83613.76 80.8767.35 56.3563.55 0.1460.067
KNN (K¼ 27) 74.1367.54 48.7565.00 61.4462.90 0.2360.064
RF (m¼ 56) 64.4262.62 59.3363.68 61.8861.92 0.2460.038
SVM (c¼ 15, c¼ 3) 59.6263.94 67.0262.85 63.3261.22 0.2760.024
NB PseAAC 48.4660.08 75.9660.05 62.2160.03 0.2560.056
KNN (K¼ 56) 52.4060.09 72.6060.05 62.5060.04 0.2560.072
RF (m¼ 13) 61.5460.03 68.1760.03 64.8660.03 0.2960.050
SVM (c¼ 0.5, c¼ 0.0004) 63.4660.04 64.4260.03 63.9460.03 02760.058
NB AA _CKSAAP 40.5864.14 87.0260.89 63.8062.26 0.3160.045
KNN (K¼ 44) 63.8568.43 70.9666.60 67.4063.49 0.3560.070
RF (m¼ 43) 68.1762.33 74.4262.51 71.3062.30 0.4360.046
SVM (c ¼ �1, c¼ 3) 72.9863.71 72.8863.35 72.9362.90 0.4660.058
Naive Bayes AA_PROSITE 45.2966.01 84.0462.99 64.6662.43 0.3260.045
KNN (K¼ 17) 64.7167.37 66.2566.94 65.4864.02 0.3160.081
RF (m¼ 30) 76.0663.17 68.1762.41 72.1261.86 0.4460.038
SVM (c¼ 15, c ¼ -15) 72.1263.49 71.8362.89 71.9762.92 0.4460.058
NB CKSAAP_PROSITE_1560 41.5463.62 86.1561.07 63.8561.86 0.3160.036
KNN (K¼ 37) 69.6269.57 71.25610.04 70.4363.14 0.4260.062
RF (m¼ 59) 71.2563.74 73.8562.42 72.5561.89 0.4560.037
SVM (c¼ 1, c¼ 3) 73.1764.33 73.3763.16 73.2763.06 0.4760.061
NB CKSAAP_PROSITE_200 44.1364.33 87.6960.26 65.9161.40 0.3560.025
KNN (K¼ 63) 74.9066.28 69.0464.01 71.9761.97 0.4460.042
RF (m¼ 11) 73.9462.41 75.2962.43 74.6262.01 0.4960.040
SVM (c¼ 8, c¼ 8) 74.8161.96 71.4462.02 73.1361.64 0.4660.033
NB AA_CKSAAP_PROSITE_1573 40.8763.58 85.6760.91 63.2761.90 0.2960.037
KNN (K¼ 33) 70.9668.16 68.17610.73 69.5762.94 0.4060.055
RF (m¼ 50) 71.4464.79 73.3762.58 72.4062.65 0.4560.053
SVM (c ¼ -1, c¼ 3) 73.4664.15 73.5662.76 73.5163.00 0.4760.060

Sp: Specificity; Sn: Sensitivity; ACC: Accuracy; MCC: Matthew’s Correlation Coefficient. AA: Composition of amino acid; CKAAP: Composition of K-Spaced Amino Acid

Pairs; PROSITE: Composition of motif or domain. AA_CKSAAP: Combined CKSAAP and AA; AA_PROSITE: Combined AA and PROSITE; CKSAAP_PROSITE_1560:

Combined CKSAAP and PROSITE with 1560 dimensionality. AA_CKSAAP_ PROSITE_1573: Combined AA, CKSAAP and PROSITE with 1573 dimensionality. The same

applies for Tables 2 and 3.
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performance of KNN predictors was obtained with CKSAAP_
PROSITE_1560 for feature selection. Within the different encod-
ing schemes, the RF predictor achieved the best performance
when CKSAAP_PROSITE_1560 was used for feature selection,
whereas a SVM combined with AA_CKSAAP_ PROSITE _1573 for
feature selection reached the best prediction performance
(Table 1 and Figure 1). PseAAC did not outperform CKSAAP
(Table 1), and each of them can represent sequence-order or
position-specific information. Therefore, in this research work,
we used AA, CKSAAP and PROSITE to compose the combined
feature selection methods.

These results indicate that the different encoding schemes
for feature selection in KNN, RF or SVM predictors were comple-
mentary to some extent. This is owing to the different ability of
different sole encoding schemes in extracting the character of
protein sequences. The AA encoding scheme clearly character-
izes AAs in different positions of the protein sequences,
CKSAAP reflects the relationship between AA pairs at different
positions [16, 29] and PROSITE illustrates the frequency of the
corresponding motif or domain. In our previous research, we
found that AA and CKSAAP showed complementary capability
in extracting the sequence character surrounding a potential
phosphorylated site [7]. On the other hand, protein–protein
interactions are frequently mediated by the binding of a modu-
lar domain in one protein to a short, linear motif in its partner

[30]. The AA sequence of a domain and the characteristics of its
ligand-binding site determined the intrinsic specificity of a
modular domain, which are context-independent because they
are retained even in the isolated domains [31]. It could be
hypothesized that the AAs surrounding or inside of a modular
domain or motif contribute to protein binding specificity.
Therefore, CKSAAP and PROSITE complement each other in ex-
tracting the sequence character of a modular domain or motif,
which might be related to the specificity of effectors binding to
G protein. We highlight here that the combination of sequence
and domain features contributes to the final improvement on
predicting the partners of one protein.

Evaluation on the performance of different classifiers

The ACC and MCC of RF and SVM predictors were higher than
that of NB and KNN predictors with different feature selection
methods (Figure 2). RF reached its highest ACC when
CKSAAP_PROSITE_1560 was used for feature selection method,
whereas SVM achieved its highest ACC when AA_CKSAAP_
PROSITE_ 1573 was used for feature selection (Figure 2). MCC
value derived by Jackknife test shows the same trend (Figure 2).

It is fair to compare the classifiers not only by the average
ACC of prediction but also by the trade-off between Sn and Sp
[32]. The gap between the sensitivity (Sn) and the specificity (Sp)
of RF and SVM predictors was always lower than that of NB and

Figure 1. ROC curves of different NB, KNN, RF and SVM predictors on the effectors of heterotrimeric G proteins in rice with different features extracting methods.
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KNN. This result implied that RF and SVM classifier performed
better on the G protein effectors than NB and KNN classifiers.
This is owing to the different ability of these four common-used
classifiers in dealing with multidimensional data sets. NB clas-
sifier has strong independent assumption of the feature vari-
ables so that only a small training sample size is needed to
represent the feature space [33]. In reality, the multidimen-
sional data sets are seldom independent. The low ACC of KNN
might be a result of inadequate size of the training data set.
However, RF and SVM classifiers can deal with data set suffering
heavily from high-dimensional, noisy, with missing values, cat-
egorical and highly correlated features [34].

RF classifier combined with CKSAAP_PROSITE_200 for
feature selection yielded the best performance

RF variable importance measures rankings can be used for
screening or filtering by selecting top-ranking parameters for
follow-up study [35]. The RF classifier was adopted as the pre-
diction engine and operated with the optimal feature selection
method after taking both the prediction performance and the
capability of ranking features into consideration.

Relief is a feature weight-based algorithm that can detect
those features that are statistically relevant to the target con-
cept [36]. Relief-F is the extension to the original Relief algo-
rithm and is able to deal with noisy and multi-class problems
rather than two-class problem [37]. We applied Relief-F to deter-
mine the optimal features number for RFs. The individual RF
predictors corresponding to different feature subsets were con-
structed and examined by using the 10-fold cross-validation on
the benchmark data set and setting 1500 for sample size (m)
and 100 for the feature-increasing gap. Figure 3 showed that
MCC of the corresponding predictor declined rapidly as dimen-
sionality increased. This was consistent with the research of
Winham et al. [38], which reported that the ability of RF to detect
SNP effects diminished as dimensionality increased.

RF combined with CKSAAP_PROSITE for feature selection
achieved the highest MCC, 0.49 when 200 features were included
(Table 1 and Figure 3). The Sn, Sp and ACC were 75.29%, 73.94%
and 74.62%, respectively. Therefore, in this study, we used RF
classifier combined with CKSAAP_PROSITE_200 for feature selec-
tion to develop a G-effector predictor. Our predictor is accessible
at http://bioinformatics.fafu.edu.cn/geffector.

G-effector outperforms BLAST, PSI-BLAST and HMMER

A comparison between the results of our G-Effector with BLAST,
PSI-BLAST and HMMER predictors were examined using a 10-
fold cross-validation data set. First, the data were divided
equally into 10-folds, 1-fold of data was used as the test data
and the remaining 9-folds of data as the training data. Second,
we optimized the E-value, and ran PSI-BLAST with three-times
iteration. The result showed that ACC of G-Effector, BLAST, PSI-
BLAST and HMMER were 74.62%, 59.81%, 66.54% and 57.55%, re-
spectively (Table 2). G-Effector also outperforms the traditional
similarity search tools on an independent test data (Figure 4).

Prediction of the G protein effectors in rice

We used G-Effector to predict the effectors of heterotrimeric G pro-
teins in rice. First, rice proteome sequences were downloaded
from Rice Genome Annotation Project (RGAP, http://rice.plantbiol
ogy.msu.edu/) [39]. All of the rice protein sequences were run
through the G-Effector predictor, and the top 30 predicted effectors
were selected for follow-up analysis. Interacting gene partners
typically have similar expression profiles over many conditions
[40], and so, we checked whether the candidate effectors co-ex-
pressed with RGA1, RGB1, RGG1 or RGG2 seen in transcriptomics
data from ROAD (Rice Oligonucleotide Array Database). The top 15
candidate effectors strongly co-expressing with RGA1 or RGB1 are
presented in Table 3. Interestingly, one of the top 15 candidate ef-
fectors, LOC_Os06g48590, had been reported to interact with Gß in
rice under stress [12].

Figure 2. Predicting performance of different classification methods with different feature extraction methods. The performance is examined by using 10-fold cross-

validation and jackknife test. The error bars indicate the standard deviations of MCC values for the case of 10-fold cross-validation with 10 runs.
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Conclusion

In this article, we first compared the performance of different
classifier combined with different encoding schemes for feature
selection by using 10-fold cross-validation data set. RF classifier

was adopted as the prediction engine because of its predicted
performance and its capability of ranking features. Relief-F was
applied to determine the optimal feature number for RF classi-
fier. RF combined with CKSAAP_PROSITE for feature selection
achieved a maximum of MCC equaling 0.49 when 200 features
were included.

The Web server, G-Effector, was developed using RF classi-
fier combined with CKSAAP_PROSITE_200 for feature selection

Figure 3. Feature optimization by using Relief-F selection method. Each performance is examined by jackknife test.

Table 2. Predicting performance of G-effector, BLAST, PSI-BLAST and HMMER, on the effectors of heterotrimeric G proteins in rice

Methods Parameter Sp (%) Sn (%) ACC (%) MCC

G-Effector m¼ 11 73.9462.41 75.2962.43 74.6262.01 0.4960.040
BLAST e-value ¼ 0.5 73.4663.39 46.1560.00 59.8161.70 0.2060.037
PSI-BLAST e-value ¼ 0.5 73.4663.39 59.6260.00 66.5461.70 0.3360.036
HMMER e-value ¼ 0.1 88.1762.72 26.9260.00 57.5561.36 0.1960.039

Figure 4. ROC curves of G-Effector, BLAST, PSI-BLAST and HMMER on the ef-

fectors of heterotrimeric G proteins in rice.

Table 3. Effectors of heterotrimeric G proteins in rice predicted by
G-effectors and verified by gene co-expression data

No. Subunit Effectors PCC Scorea

1 Ga LOC_Os06g34690 0.51 0.89
2 Ga LOC_Os04g46620 0.50 0.87
3 Ga LOC_Os10g10244 0.50 0.85
4 Ga LOC_Os01g19450 0.50 0.69
5 Ga LOC_Os02g05630 0.59 0.59
6 Gb LOC_Os06g34690 0.80 0.89
7 Gb LOC_Os04g46620 0.72 0.87
8 Gb LOC_Os03g59020 0.69 0.87
9 Gb LOC_Os03g64210 0.57 0.85
10 Gb LOC_Os05g28280 0.66 0.85
11 Gb LOC_Os06g47320 0.78 0.83
12 Gb LOC_Os10g32550 0.54 0.83
13 Gb LOC_Os06g45710 0.55 0.81
14 Gb LOC_Os06g48590 0.64 0.58
15 Gb LOC_Os10g08550 0.68 0.79

aScore: predicted by G-Effector tool.
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and is freely accessible at http://bioinformatics.fafu.edu.cn/gef
fector. The G-Effector predictor outperformed the existing three
similarity search tools when tested by an independent data set.

We used G-Effector to screen the effectors of heterotrimeric
G proteins in rice, and we confirmed the candidate effectors by
using gene co-expression data. One of the top 15 candidate ef-
fectors is verified by the research work of Bhardwaj et al. [12].
The candidate effectors’ list in this article provides both a clue
for researchers as to their function and a framework of valid-
ation for future experimental work.

Key Points

• There are biological, technical and experimental needs
to evaluate the predicting performance of different
classifiers combined with different feature selection
methods in predicting the effectors of heterotrimeric G
proteins and use the best one to develop a new online
predictor.

• Compared with other algorithms, RF classifier com-
bined with CKSAAP_PROSITE_200 for feature selection
yields the best performance.

• An online predictor, G-Effector, is developed by using
RF classifier combined with CKSAAP_PROSITE_200 for
feature selection method.

• G-Effector outperforms the traditional similar search
tools, including BLAST, PSI-BLAST and HMMER, on pre-
dicting G protein effectors.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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